Wednesday, June 13, 2018

. . . In the Sky with Diamonds

Astronomers detect diamond dust shimmering around distant stars
For decades, astronomers have puzzled over the exact source of a peculiar type of faint microwave light emanating from a number of regions across the Milky Way. Known as anomalous microwave emission (AME), this light comes from energy released by rapidly spinning nanoparticles – bits of matter so small that they defy detection by ordinary microscopes. (The period on an average printed page is approximately 500,000 nanometers across.)
So not much value for jewelry.
“Though we know that some type of particle is responsible for this microwave light, its precise source has been a puzzle since it was first detected nearly 20 years ago,” said Jane Greaves, an astronomer at Cardiff University in Wales and lead author on a paper announcing this result in Nature Astronomy.

Until now, the most likely culprit for this microwave emission was thought to be a class of organic molecules known as polycyclic aromatic hydrocarbons (PAHs) – carbon-based molecules found throughout interstellar space and recognized by the distinct, yet faint infrared (IR) light they emit. Nanodiamonds — particularly hydrogenated nanodiamonds, those bristling with hydrogen-bearing molecules on their surfaces — also naturally emit in the infrared portion of the spectrum, but at a different wavelength.
HD 97048

A series of observations with the National Science Foundation’s Green Bank Telescope (GBT) in West Virginia and the Australia Telescope Compact Array (ATCA) has — for the first time — homed in on three clear sources of AME light, the protoplanetary disks surrounding the young stars known as V892 Tau, HD 97048, and MWC 297. The GBT observed V892 Tau and the ATCA observed the other two systems.

“This is the first clear detection of anomalous microwave emission coming from protoplanetary disks,” said David Frayer a coauthor on the paper and astronomer with the Green Bank Observatory.

The astronomers also note that the infrared light coming from these systems matches the unique signature of nanodiamonds. Other protoplanetary disks throughout the Milky Way, however, have the clear infrared signature of PAHs yet show no signs of the AME light.

This strongly suggests that PAHs are not the mysterious source of anomalous microwave radiation, as astronomers once thought. Rather, hydrogenated nanodiamonds, which form naturally within protoplanetary disks and are found in meteorites on Earth, are the most likely source of AME light in our galaxy.
“In a Sherlock Holmes-like method of eliminating all other causes, we can confidently say the best candidate capable of producing this microwave glow is the presence of nanodiamonds around these newly formed stars,” said Greaves. Based on their observations, the astronomers estimate that up to 1-2 percent of the total carbon in these protoplanetary disks has gone into forming nanodiamonds.
That's a big pile of very tiny diamonds.
Evidence for nanodiamonds in protoplanetary disks has grown over the past several decades. This is, however, the first clear connection between nanodiamonds and AME in any setting.

Statistical models also strongly support the premise that nanodiamonds are abundant around infant stars and are responsible for the anomalous microwave emission found there. “There is a one in 10,000 chance, or less, that this connection is due to chance,” said Frayer.
. . .
Nanodiamonds likely form out of a superheated vapor of carbon atoms in highly energized star-forming regions. This is not unlike industrial methods of creating nanodiamonds on Earth.

Wombat-socho has "Rule 5 Monday: Shakira Law And The Rock Sharky" ready for your digital pleasure.

No comments:

Post a Comment