In an article in the March 8 issue of the journal PLoS Computational Biology, physicists Travis Craddock and Jack Tuszynski of the University of Alberta, and anesthesiologist Stuart Hameroff of the University of Arizona demonstrate a plausible mechanism for encoding synaptic memory in microtubules, major components of the structural cytoskeleton within neurons.
Microtubules are cylindrical hexagonal lattice polymers of the protein tubulin, comprising 15 percent of total brain protein. Microtubules define neuronal architecture, regulate synapses, and are suggested to process information via interactive bit-like states of tubulin. But any semblance of a common code connecting microtubules to synaptic activity has been missing. Until now...
Using molecular modeling, Craddock et al reveal a perfect match among spatial dimensions, geometry and electrostatic binding of the insect-like CaMKII, and hexagonal lattices of tubulin proteins in microtubules. They show how CaMKII kinase domains can collectively bind and phosphorylate 6-bit bytes, resulting in hexagonally-based patterns of phosphorylated tubulins in microtubules. Craddock et al calculate enormous information capacity at low energy cost, demonstrate microtubule-associated protein logic gates, and show how patterns of phosphorylated tubulins in microtubules can control neuronal functions by triggering axonal firings, regulating synapses, and traversing scale.
This is a big deal, if true. Probably as big as Watson and Crick's DNA work. I could easily see a Nobel Prize coming from this.
No comments:
Post a Comment