Well, close, but not quite. From Watts Up With That: Is China’s plan to use a nuclear bomb detonator to release shale gas in earthquake-prone Sichuan crazy or brilliant?
China is planning to apply the same technology used to detonate a nuclear bomb over Hiroshima during the second world war to access its massive shale gas reserves in Sichuan province. While success would mean a giant leap forward not only for the industry but also Beijing’s energy self-sufficiency ambitions, some observers are concerned about the potential risk of widespread drilling for the fuel in a region known for its devastating earthquakes.
Despite being home to the largest reserves of shale gas on the planet – about 31.6 trillion cubic metres according to 2015 figures from the US Energy Information Administration, or twice as much as the United States and Australia combined – China is the world’s biggest importer of natural gas, with about 40 per cent of its annual requirement coming from overseas.
In 2017, it produced just 6 billion cubic metres of shale gas, or about 6 per cent of its natural gas output for the whole year.
The problem is that 80 per cent of its deposits are located more than 3,500 metres (11,500 feet) below sea level, which is far beyond the range of hydraulic fracturing, the standard method for extraction.
But all that could be about to change, after a team of nuclear weapons scientists led by Professor Zhang Yongming from the State Key Laboratory of Controlled Shock Waves at Xian Jiaotong University in Shaanxi province, released details of a new “energy rod” that has the power to plumb depths never before thought possible.
Unlike hydraulic fracturing, or fracking as it is more commonly known, which uses highly pressurised jets of water to release gas deposits trapped in sedimentary rock, Zhang’s torpedo-shaped device uses a powerful electric current to generate concentrated, precisely controlled shock waves to achieve the same result.
He told the South China Morning Post that while the technology had yet to be applied outside the laboratory, the first field test was set to take place in Sichuan in March or April.
Zhang and his team have dubbed their creation an “energy concentration rod” as it is able to control the release of explosive bolts of energy into an extremely short, precisely calculated period of time so as to maximise the fracturing effect of the shock waves.I would like to assure you that's a shitload, but I don't really have an intuitive sense for how much that is. But a fracturing a sphere of rock 50m in diameter makes a big heap of gravel.
It works by passing a strong electric current along a specially coated wire coil – encased by a metal shell – that is submerged in water. When the wire vaporises it produces a cloud of plasma – the extremely hot, electrically charged matter that makes up the sun – within which is a huge amount of energy just waiting to be released.
“The shock wave generated by the device can be as high as 200 megapascals at close range, which is expected to produce a fracture zone up to 50 metres in diameter,” Zhang said.
The method, known as exploding wire, enables scientists to control the energy, duration and even direction of the explosion. The same principle was used to detonate the atomic bomb code named “Little Boy” that was dropped on Hiroshima in 1945.Maybe the technique could be adapted in America for fracking using a less onerous mix of water and chemicals? Besides, it would be kind of cool to steal some Chinese technical advance. Turn about is fair play.
Despite that commonality, Zhang’s device does not create a nuclear blast, so is fundamentally different to what the United States was doing in the 1960s, when scientists there detonated a nuclear bomb underground to boost natural gas production. The former Soviet Union also used thermal nuclear weapons for mining and in dam construction.
Also, unlike a traditional detonator, which fires just once, Zhang’s energy rod has been designed to withstand hundreds of massive blasts.
After each one, the rod is hoisted back up the shaft and a jet of water is injected under high pressure into the cavity to further open up the rock. The rod is then lowered back into position and is ready to fire again.
The device can “generate shock waves repeatedly … like a machine gun”, Zhang said, adding that because the wire was encased and submerged the rod did not generate sparks, so reducing the safety risk.
While the scientist has concerns about how well his creation will work in shale rock, it has already been used to release potentially hazardous gas deposits from coal beds and is now recommended by the government as a way to improve both safety and productivity in the mining industry.
No comments:
Post a Comment