About 10 years ago, a little-known aerospace engineer called Roger Shawyer made an extraordinary claim. Take a truncated cone, he said, bounce microwaves back and forth inside it and the result will be a thrust toward the narrow end of the cone. Voila … a revolutionary thruster capable of sending spacecraft to the planets and beyond. Shawyer called it the EmDrive.Just catch a few rays on your solar/stellar panels, send the electricity to the EmDrive, and voila, propulsion without wasting reaction mass. But there's a pesky little problem with one of Newton's Laws.
Shawyer’s announcement was hugely controversial. The system converts one type of energy into kinetic energy, and there are plenty of other systems that do something similar. In that respect it is unremarkable.If I only had $5 for every proposal for a perpetual motion machine; but I digress.
The conceptual problems arise with momentum. The system’s total momentum increases as it begins to move. But where does this momentum come from? Shawyer had no convincing explanation, and critics said this was an obvious violation of the law of conservation of momentum.
Shawyer countered with experimental results showing the device worked as he claimed. But his critics were unimpressed. The EmDrive, they said, was equivalent to generating a thrust by standing inside a box and pushing on the sides. In other words, it was snake oil.
Since then, something interesting has happened. Various teams around the world have begun to build their own versions of the EmDrive and put them through their paces. And to everyone’s surprise, they’ve begun to reproduce Shawyer’s results. The EmDrive, it seems, really does produce thrust. . . And last year, NASA conducted its own tests in a vacuum to rule out movement of air as the origin of the force. NASA, too, confirmed that the EmDrive produces a thrust. In total, six independent experiments have backed Shawyer’s original claims.So put one in space with some solar panels, a little machinery to navigate with, and see if it flies!
That leaves an important puzzle—how to explain the seeming violation of conservation of momentum.
The answer is that they don't really know yet, but theories they have will challenge physics as we know it.
Today we get an answer of sorts thanks to the work of Mike McCulloch at Plymouth University in the U.K. McCulloch’s explanation is based on a new theory of inertia that makes startling predictions about the way objects move under very small accelerations.Something here doesn't link, at least to me. Does the universe push back against hot objects? Not that I've heard of.
First some background. Inertia is the resistance of all massive objects to changes in motion or accelerations. In modern physics, inertia is treated as a fundamental property of massive objects subjected to an acceleration. Indeed, mass can be thought of as a measure of inertia. But why inertia exists at all has puzzled scientists for centuries.
McCulloch’s idea is that inertia arises from an effect predicted by general relativity called Unruh radiation. This is the notion that an accelerating object experiences black body radiation. In other words, the universe warms up when you accelerate.
According to McCulloch, inertia is simply the pressure the Unruh radiation exerts on an accelerating body.
That’s hard to test at the accelerations we normally observe on Earth. But things get interesting when the accelerations involved are smaller and the wavelength of Unruh radiation gets larger.If this is true, the rules of physics are stranger than we've imagined
At very small accelerations, the wavelengths become so large they can no longer fit in the observable universe. When this happens, inertia can take only certain whole-wavelength values and so jumps from one value to the next. In other words, inertia must quantized at small accelerations.
McCulloch says there is observational evidence for this in the form of the famous fly by anomalies. These are the strange jumps in momentum observed in some spacecraft as they fly past Earth toward other planets. That’s exactly what his theory predicts.
Testing this effect more carefully on Earth is hard because the accelerations involved are so small. But one way to make it easier would be to reduce the size of allowed wavelengths of Unruh radiation. “This is what the EmDrive may be doing,” says McCulloch.
McCulloch’s theory could help to change that, although it is hardly a mainstream idea. It makes two challenging assumptions. The first is that photons have inertial mass. The second is that the speed of light must change within the cavity. That won’t be easy for many theorists to stomach.Proving Newton's Laws wrong is one thing, Einstein did that a century ago now, at least at the margins. But the constancy of the speed of light in integral to Einstein's theories of Relativity. They've been trying for years, and no one has proved Einstein wrong yet.
But as more experimental confirmations of Shawyer’s EmDrive emerge, theorists are being forced into a difficult position. If not McCulloch’s explanation, then what?
Wombat-socho has the giant "Rule 5 Sunday: Blue Shirt Double-Dip Edition" ready at The Other McCain.
Say WHAT?
ReplyDeleteAt very small accelerations, the wavelengths become so large they can no longer fit in the observable universe. When this happens, inertia can take only certain whole-wavelength values and so jumps from one value to the next. In other words, inertia must quantized at small accelerations.